Q.P. Code: 18EE0220

(AUTONOMOUS)

B.Tech IV Year I Semester Regular Examinations February-2022

UTILIZATION OF ELECTRICAL ENERGY

(Electrical and Electronics Engineering)

Time: 3 hours

Max. Marks: 60

K19

PART-A

(Answer all the Questions $5 \times 2 = 10$ Marks)

1	a	Define space to height ratio.	L2	2M
	b	Write the advantages of resistance welding.	L1	2 M
	c	What are the major parts of an electric drive?	L3	2M
	d	Write any two advantages of electric traction system.	L2	2M
	e	Define specific energy consumption.	L1	2M

PART-B

(Answer all Five Units $5 \ge 10 = 50$ Marks)

UNIT-I

2 a Explain principle and operation of fluorescent lamp with a neat sketch. L1 5M

b A 250 CP lamp is hung 4m above the centre of a circular area of 6m diameter. L3 5M Calculate the illumination at the at the (i) Centre of area, (ii) Periphery of the area, (iii) Average illumination.

OR

3 a State and explain laws of illumination.
b If a lamp of 200CP is placed 1 m below a plane mirror, which reflects 90% of light L3 5M falling on it, determine the illumination at point 3 m away from the foot of the lamp which is hung 4 m above the ground.

UNIT-II

4	a	Briefly discuss the method of Dielectric heating.	L2	6M
	b	Differentiate between DC and AC welding.	L2	4M
		OR		
5	a	What are the different types of heating? Write the advantages of electric heating.	L1	5M
	b	Discuss briefly about induction heating process.	L2	5M

UNIT-III

6 What is an individual drive, group drive and multi motor drive? Explain with suitable L3 10M examples.

Q.P. Code: 18EE0220			R18	
		OR		
7	a	What are the advantages and disadvantages of Electric drives?	L3	5M
	b	How do you select a motor for an industrial application?	L2	5M
		UNIT-IV		
8	De	escribe how Plugging, Rheostatic braking and Regenerative braking are employed	L2	10M
	with DC series motor.			
		OR		
9	a	Discuss the speed-time curves for urban service.	L2	5M
	b	A train has schedule speed of 30 km/hr over a level track distance between stations	L3	5M
		being 1 km. Duration of stop is 20 sec. Assuming braking retardation of 3 km/hr/sec		
		and maximum speed 25% greater than average speed, calculate acceleration		
		required to run the service.		
		UNIT-V		

- 10 a A train is to run between two stations 1.6 km apart at an average speed of 40 kmph, L3 6M the run is to be made to a quadrilateral speed- time curve. Maximum speed is to be limited to 64 kmph, acceleration to 2 kmphps, coasting retardation to 0.16, and braking retardation to 3.2, determine the duration of a acceleration, coasting and braking periods.
 - **b** What factors affect the specific energy consumption?

OR

L1

4M

- 11 A 100-ton weight train has a rotational inertia of 10%. This train has to be run between L3 10M two stations that are 3 km a part and has an average speed of 50 km/hr. The acceleration and the retardation during braking are 2 kmphps and 3 kmphps, respectively. The percentage gradient between these two stations is 1% and the train is to move up the incline the track resistance is 50 N/ton, then determine:
 - (i) Maximum power at the driving axle.
 - (ii) Total energy consumption.
 - (iii) Specific energy consumption.

END